대전형 녹색도시 구축을 위한 기초연구

정환도

연구책임

정환도 / 도시기반연구실 책임연구위원
제 1 장

연구의 개요

1. 연구의 배경 및 목적
2. 연구의 내용 및 흐름
제1장 연구의 개요

1. 연구의 배경 및 목적

- 도시에 적용할 수 있는 신재생에너지로는 태양광, 태양열, 지열, 풍력, 바이오매스 등이 있음
- 대전광역시의 경우, 다양한 도시 인프라 시설에 의해 지하공간을 이용하기 어려운 점과 도시 밀도가 높은 구조를 가지고 있어 지열과 풍력을 이용하기는 어려운 상황임
- 바이오매스의 경우는 도시에서 발생하는 유기성 폐기물량이 제한적인 데다가 시설설치에 따른 에너지원(바이오가스)을 도시 내에서 활용하는데 어려움이 있음
- 해외에서도 독일의 프라이부르크를 선두로 하여 독일의 보통과 호주의 엘리스 스프링 등이 태양의 도시를 선언하며, 태양광 시설을 적극적으로 도입하고 있는 추세임
- 국내에서도 광주와 대구의 경우 태양의 도시라는 도시브랜드를 내세우며, 도시환경 마케팅을 하고 있음
- 특히, 이들 도시에서는 도시의 에너지원을 태양광으로 대체하고, 건물 지붕 등을 활용하여, 도시 브랜드 강화를 함
- 이에 도시 에너지원 대부분을 전력으로 사용하고 있는 대전광역시의 경우 태양광 도입이 시급한 실정이며, 태양광 집단 생산시설 도입이나

태양광 시범단지 조성과 같은 신재생에너지 기반으로 한 단지 조성이 필요함
- 따라서 이번 연구에서는 대전광역시가 태양광을 적극적으로 활용하는 녹색도시로의 전환이 필요한 시점에서, 태양광 에너지 생산 시범시설이 필요한 후보지역을 살펴보고 분석하였음

2. 연구의 내용 및 흐름

- 먼저, 본 연구에서는 국내외 태양광시설에 대한 검토를 시도함. 특히 외국의 경우에는 웹(예: http://...) 중심으로 유명건물 혹은 시설물에 대한 조사를 시도함
- 국내적으로는 2000년대를 필두로 광주시와 대구시의 경우 태양의 도시 혹은 에너지자립도시 등을 주장하면서, 많은 태양광 관련시설물에 대한 조사를 함
- 한편, 본 연구는 대전광역시 지역특수성을 반영하는 태양광 시설 후보군에 대한 검토연구를 고려할 때, 약 5천평을 전후하는 공공시설물은 대상으로 검토를 시도함
제2장 태양광 시설물의 국내외 사례조사

1. 외국의 태양광시설물 설치사례

■ 독일의 프라이부르크

다음은 독일의 프라이부르크에서 설치된 태양광 시설물의 사례입니다.

또한 독일 건축가 루프 덤이가 설계한 회전형 태양건물인 헬리오톤(Heliotope)를 조성하여 신재생에너지 부문에 있어 명소로 마련하는 등 태양에너지의 활성화 시키고 있음

또한 헬리오톤같은 상징적인 태양에너지의 활용 뿐 아니라, 쉬레부르
크(Schlieburg)라는 태양광 연립주택(150세대)을 조성, 에너지 자립을 추구하여 실질적으로도 태양에너지 사용하여 화석연료의 사용을 억제하고 친환경적인 신재생에너지의 적극 도입

시의 북서쪽에 위치한 아이헬목 매립장에 태양광 시설을 설치하여 전기를 공급

■ 브라질의 모로코

■ 대만 가오슝 시
- 대만 가오슝시의 100% 태양광 에너지 기반 스타디움으로, 8,844개의 태양광 패널을 통해 만들어지는 전기로 3,300개의 조명과 2개의 대형 스크린 등 각종 시설물을 가동
- 경기가 없을 때는 주변지역에 총 전력소모량의 약 70~80%를 차지하는 114만kwh의 전력을 공급
■ 미국 캘리포니아

○ 2011년 2월부터 캘리포니아 관호 도방구에 위치한 북미 규격시험소의 태양광 패널 설치

○ 2011년 2월부터 캘리포니아 관호 도방구에 위치한 북미 규격시험소의 태양광 패널 설치

■ 영국 런던

○ 2012년 완공예정인 영국 런던의 블랙프라이어스의 빅토리아 교량에는 6000㎡의 태양전지 모듈이 설치되어 90만kwh 전력생산 예정

■ 호주 브리즈번

○ 호주 브리즈번의 Kuriha 교량에 설치된 태양광 시설

○ 호주 브리즈번의 Kuriha 교량은 공공시설물에 재생에너지 기술을 접목한 모범적인 사례로, 매년 40만kwh의 전력을 생산
■ 벨기에

![그림 9> 벨기에의 터널에 설치된 태양광 터널](image1)

○ 벨기에와 핀스테르담을 연결하는 벨기에의 터널에 16,000여개의 태양광 패널이 설치되어 전력을 생산

■ 독일 보봉(Vauban)

![그림 10> 보봉의 솔라하우스](image2)

○ 보봉은 프라이부르크와 같이 '솔라하우스(Solar House)' 경제를 바탕으로 태양광 연립주택을 건설하였으며, 지붕에 설치된 태양광 집열판을 통해 전기를 생산해 관리함으로써, '잉여 에너지 주택(Surplus-energy house)'를 조성

■ 스페인 바르셀로나

![그림 11> 바르셀로나의 태양광 캐노피](image3)

○ 2004년 완공된 바르셀로나의 태양광 캐노피는 4,500㎡에 설치됨

■ 호주 애들레이드

○ 현재 녹색 에너지와 태양 에너지의 높은 호응에 대한 관심 증가로 호주 내에서의 태양 에너지에 대한 개발이 지속적으로 증가하고 있는 추세임
호주는 태양에너지 발전을 위해 좋은 조건을 갖추고 있으며, 이미 세계 최고수준의 태양전지 기술을 가지고 있음.

호주는 대부분의 지역이 온대기후에 속하며, 국토의 30%가 하루 평균 일조량이 24MJ/m²이상, 약 60%가 일조량 20MJ/m² 이상을 기록하고 있어 태양열과 관련된 산업이 발달해 있음.

애들레이드에는 1MW급 태양열 시스템이 애들레이드 소그라운드 6개 건물에 설치되어 이곳에서 필요한 전력의 40%를 충당하고 있음.

거리에 있는 가로수에는 태양광을 설치하여 야간에는 자동으로 불이 켜지는 시스템이 도입되어 하나의 관광명소로 손꼽히고 있음.

애들레이드는 호주 태양열 산업의 활성화를 이끄는 태양의 도시(Solar City)로 선정되어 2013년까지 1천 5백만달러의 지원금을 받으며 태양열 분야에 노력을 기울이고 있음.

애들레이드 시는 태양열 및 태양광 시스템 도입으로 연간 3만t의 온실가스 배출량을 감소시키고, 1인당 200AUS의 에너지 비용을 절감하고 있음.

<그림 12> 애들레이드 태양광 시스템 설치사례

<그림 13> 솔라시티 '애들레이드'

<그림 14> 애들레이드의 태양광 주택과 가로등 시설
2. 국내의 태양광시설물 설치사례

■ 세종시-유성(대전)구간 도로장양차선의 자전거도로

<그림 15> 세종시에 건설중인 중앙분리대 형식의 첨단 자전거도로

- 현재 세종과 대전을 잇는 주요 자전도로의 중앙차선형식의 첨단자전거도로 폭 3.9m, 거리 8.8km를 개설함

■ 폐고속도로 태양광 발전사업

<그림 17> 고속도로 폐도에 설치예정인 태양광 발전시설

- 한국도로공사는 고속도로 폐도 부지 130만㎡ 중 50만㎡에 25MWP 규모의 태양광 발전시설을 설치할 계획이며, 호남고속도로 장성면기점과 남해고속도로 진창나들목 부근에 2-3MWP 규모의 시범사업을 착수

■ 광주광역시

<그림 18> 광주시청 주차장과 김대중 컨벤션센터

- 전기생산능력은 총 6MW(5851MW/yr)로 약1600가구에 전력을 공급가능한 것으로 나타남
광주의 대표적인 태양열 마을인 '신호천' 마을은 현재 광역쓰레기 매립장이 생기면서 광주시와 주민의 협의를 거쳐 마을 전체를 이전하게 되었으며, 재 주거단지를 조성하게 되면서 태양광 발전 시스템을 옥상마 다 설치하게 되었음.

현재 신호천 마을은 64세대가 2.1KW의 발전능력을 가지고 있으며, 주민들은 태양광 발전 및 소비자익을 통한 매월 200원 정도의 전기요금을 절약하고 있음.

대구광역시

대구시는 2011년 세계육상선수권대회를 위해 선수촌 9개동 528세대에 태양광을 이용한 발전시설을 도입하고, 선수촌 연습장과 경기장 주변에는 태양광 발전 가로등을 설치하였음.

대구엑스코는 그린에너지 엑스포가 열린 건물로서 태양광과 지열을 활용하여 에너지를 공급받고 있음.

경기도 의왕시

대구 엑스코(EXCO)

만촌물 사업소에 설치된 태양광 발전소
외원시는 대손동 224번지 백운물 관리사업소 내 침전지 상부에 사업비 11억 7천 6백만원을 투자하여 140KW 규모의 중형급 태양광 발전소를 지난 2008년 1월에 준공해 시험전력을 생산하고 신축

■ 충청북도 청주

○ 충북의 ‘아시아 솔라밸리’ 프로젝트의 첫 번째 프로젝트인 ‘태양광 전문 산업단지’가 ‘아시아 최대의 태양광 발전 센터’를 목표로 중앙에서 건설 중임
○ 2012년에는 증평군 일반산업단지에 태양광 관련 업체가 입주하고 ‘태양 전지 종합기술지원센터’가 건립될 예정

<그림 23> 증평군에 건설되는 ‘태양광 전문 산업단지’ 조감도

■ 경기도 군포와 경남 양산의 대한통운 물류센터

○ 경기도 군포와 경남 양산에 위치한 복합물류센터는 지붕에 2.5Mwh 규모의 전력을 생산할 수 있는 태양광 관리가 들어서게 됨. 지붕면적 99.174㎡로 국제규격 축구장 14개 날이와 같음

<그림 24> 대한통운 복합물류 터미널 지붕
제3장 대전광역시 태양광시스템 설치후보지역 검토 및 분석

1. 후보지역 현황 및 비교
2. 후보지역 특성 및 장단점 분석

<그림 25> 대전시 태양광 시스템 설치가능지역 위치도
- 후보지역은 대체적으로 설치가능면적이 5천평방미터로, 비교적 설치가 용이하고 시설물을 대상으로 하였음
- 대전광역시 태양광시스템 설치가능 지역에 대한 분석은 다음의 표와 같으며, 대체적으로 전력생산효율 및 시설물 사용기간을 고려해야 하는 필요성이 있음

<table>
<thead>
<tr>
<th>구분</th>
<th>주소</th>
<th>설치가능면적 (m²)</th>
<th>주사면 (평)</th>
<th>설치형태</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>대전시 중구 연평동 703</td>
<td>13,400</td>
<td>4.054</td>
<td>주차형 (복층)</td>
<td>지붕형</td>
</tr>
<tr>
<td>2</td>
<td>대전시 중구 연평동 586</td>
<td>7,000</td>
<td>2.118</td>
<td>지붕</td>
<td>지붕형</td>
</tr>
<tr>
<td>3</td>
<td>대전시 중구 연평동 2,100</td>
<td>6.85</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>대전시 중구 동산동 920</td>
<td>44,300</td>
<td>13.404</td>
<td>주차형 (복층)</td>
<td>지붕형</td>
</tr>
<tr>
<td>5</td>
<td>대전시 중구 동산동 47,000</td>
<td>14.218</td>
<td>지붕형</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>대전시 중구 동산동 16,900</td>
<td>5.112</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>대전시 중구 동산동 6,100</td>
<td>1.845</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>대전시 중구 동산동 9,800</td>
<td>2.965</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>대전시 중구 동산동 3,700</td>
<td>1.119</td>
<td>주차형 (복층)</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>대전시 중구 동산동 20,000</td>
<td>6.050</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>대전시 중구 동산동 28,400</td>
<td>8.591</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>대전시 중구 동산동 14,000</td>
<td>42.360</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>대전시 중구 동산동 66,000</td>
<td>19.360</td>
<td>지붕형</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>대전시 중구 동산동 181,000</td>
<td>547.360</td>
<td>지붕</td>
<td>지붕형</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>안정값</th>
<th>알림값</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.6</td>
<td>-16.0</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>12.2</td>
</tr>
<tr>
<td>3</td>
<td>17.7</td>
<td>22.0</td>
</tr>
<tr>
<td>4</td>
<td>25.1</td>
<td>25.5</td>
</tr>
<tr>
<td>5</td>
<td>20.5</td>
<td>13.9</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>4.01</td>
<td>2.62</td>
</tr>
<tr>
<td>8</td>
<td>3.69</td>
<td>4.49</td>
</tr>
<tr>
<td>9</td>
<td>5.40</td>
<td>4.99</td>
</tr>
<tr>
<td>10</td>
<td>3.57</td>
<td>4.17</td>
</tr>
<tr>
<td>11</td>
<td>4.19</td>
<td>3.96</td>
</tr>
<tr>
<td>12</td>
<td>3.55</td>
<td>2.76</td>
</tr>
<tr>
<td>13</td>
<td>2.55</td>
<td></td>
</tr>
</tbody>
</table>

- 태양광 시스템 설치사항
 - 판판당 적용 용량 : 3kW
 - 태양광 판넬 1개 설치 소요면적(1) : 25㎡/3kW
 - 종류 : 단결정형
 - 경사각 : 30°
 - 방위 : 0°
 - 효율 : 18%
 - 수온율 : 5%
 - 인버터효율 : 95%

- 태양광 에너지 생산량(2)
 - 대전시 기준 : 4.153MWh/yr

- 태양광 에너지 대체효과
 - 1MWh=약 100세대 전력공급 가능방으로 환산

1) 설치소요 면적 = 시설설치면적 + 여유면적 (음영방지)
2) 에너지생산량은 RETScreen에 의해 계산된 값이며, 에너지 저장방법 및 부속기기 등에 따라 변동될 수 있음. 또한, 기온과 수평면 알림 등은 대략으로 차이가 없으며 일반가능성으로 예상함.
또한 태양광 시설 후보지역에 대한 전력생산능력은 가능한 일조시간을 Max.으로 한 시뮬레이션으로, 전력생산능력이 다소 높을수 있음.
■ 농협 하나로 마트 (산행동)

현장요건
- 사용 형태 : 주차장 (옥상)
- 설치가능 형태 : 지붕형
- 태양광 에너지 효율
 - 태양광 설치 가능 면적 : 13,400㎡
 - 에너지 생산량 : 2,226 MWh/yr
 - 대체효과 : 약 600가구

특성 및 장단점 분석
- 자동차 주차시 햇빛을 차단해 이용자들의 편안성 증가
- 신재생에너지 시스템을 통한 이산화탄소 발생량 감소

■ 평생 청소년 수련원

현장요건
- 사용 형태 : 지붕
- 설치가능 형태 : 지붕형
- 태양광 에너지 효율
 - 태양광 설치 가능 면적 : 5,000㎡
 - 에너지 생산량 : 831MWh/yr
 - 대체효과 : 약 220가구

특성 및 장단점 분석
- 기존도시의 이미지를 환경 예능지 도시로 향상
- 청소년들에게 교육적 측면에서 효과적임
■ 한밭수목원 (이동무대)

현장요건
• 사용 형태: 이동무대
• 설치가능 형태: 지붕형

태양광 에너지 효율
• 태양광 설치 가능 면적: 2,100㎡
• 에너지 생산량: 349MWh/yr
• 대체효과: 약 100가구

특성 및 장단점 분석
• 대전시의 랜드마크적 역할을 할 것으로 기대
• 후원시에도 무대에서 공연이 가능

■ 대전 정부청사

현장요건
• 사용 형태: 주차장 (노면)
• 설치가능 형태: 주차형

태양광 에너지 효율
• 태양광 설치 가능 면적: 주차장 44,300㎡
• 에너지 생산량: 7,359MWh/yr
• 대체효과: 약 2000가구

■ 대전 정부청사 주차장

현장요건
• 사용 형태: 주차장 (노면)
• 설치가능 형태: 주차형

태양광 에너지 효율
• 태양광 설치 가능 면적: 주차장 44,300㎡
• 에너지 생산량: 7,359MWh/yr
• 대체효과: 약 2000가구
시설 현장요건 및 특성

대전 정부청사 녹지1면

- 사용 형태: 녹지
- 설치가능 형태: 지붕형

태양광 에너지 효율
- 태양광 설치 가능 면적: 녹지1면 47,000㎡
- 에너지 생산량: 7,808MWh/yr
- 대체효과: 약2100가구

특성 및 장단점 분석
- 정부의 녹색성장 기조와 일치
- 단점: 정부와 긴밀한 협의 필요

농수산물 시장 (오정동)

- 사용 형태: 지붕
- 설치가능 형태: 지붕형

태양광 에너지 효율
- 태양광 설치 가능 면적: 16,900㎡
- 에너지 생산량: 2,807MWh/yr
- 대체효과: 약770가구

특성 및 장단점 분석
- 일체성 지붕설치에 의해 전력확보양호
- 단점: 도해시장을 고려할 때 설치공사의 어려움 초래
■ KOTRA (무역전시관)

현장요건
- 사용 형태: 지붕
- 설치가능 형태: 지붕형
- 태양광 에너지 효율
 - 태양광 설치 가능 면적: 6,100㎡
 - 에너지 생산량: 1,013MWh/yr
 - 대체효과: 약 270가구

특성 및 장단점 분석
- 국제적 홍보 및 랜드마크기능 기대
- 단점: 투자 협소

■ 대전 컨벤션 센터 (DCC)

현장요건
- 사용 형태: 지붕
- 설치가능 형태: 지붕형
- 태양광 에너지 효율
 - 태양광 설치 가능 면적: 9,800㎡
 - 에너지 생산량: 1,628MWh/yr
 - 대체효과: 약 440가구

특성 및 장단점 분석
- 국제적 홍보 및 랜드마크기능 기대
- 단점: 투자 협소
■ 대전시청 (동편 주차장)

현장요건
★ 사용 형태 : 주차장 (노면)
★ 설치가능 형태 : 주차형

태양광 에너지 효율
★ 태양광 설치 가능 면적 : 3,700㎡
★ 에너지 생산량 : 615MWh/yr
★ 대체효과 : 약 170가구

특성 및 장단점 분석
★ 대전시 에너지정책과 연동
★ 단점 : 시청 주차장 안으로는 연계 미흡

■ 첫드림 경기장

현장요건
★ 사용 형태 : 지붕
★ 설치가능 형태 : 지붕형

태양광 에너지 효율
★ 태양광 설치 가능 면적 : 20,000㎡
★ 에너지 생산량 : 3,322MWh/yr
★ 대체효과 : 약 900가구

특성 및 장단점 분석
★ 가변지붕 형태로 에너지마케팅 이미지 상승효과
★ 단점 : 가변지붕을 고려할 때 기술적문제 극복 필요
농수산물시장 (노은동)

현장요건
- 사용 형태: 지붕/주차장(복합)
- 설치가능 형태: 지붕,주차형

태양광 에너지 효율
- 태양광 설치 가능 면적: 28,400m²
- 에너지 생산량: 4,718MWh/yr
- 대체효과: 약 1,300가구

남대전 물류단지 (낭월동)

현장요건
- 사용 형태: 지붕(예정)
- 설치가능 형태: 지붕형

태양광 에너지 효율
- 태양광 설치 가능 면적: 140,000m²
- 에너지 생산량: 23,257MWh/yr
- 대체효과: 약 6,370가구

특성 및 장단점 분석
- 시설물설치 협의의 비가격 흔적
- 단점: 여러개의 건물로 분포되어 있음

특중부군 최대의 물류단지
- 단점: 2013년 완공예정

3) 2013년 완공예정이므로 계획부지 면적 560,000m²의 1/4 면적으로 산정함
경부고속도로 폐더리 및 도로부분

다리부분(가양공원)

현장요건
- 사용 형태 : 다리
- 설치가능 형태 : 도로형

태양광 에너지 효율
- 태양광 설치 가능 면적 : 다리A 3,600㎡ (360m × 10m) + 다리B 2,800㎡ (360m × 10m) = 6,400㎡
- 에너지 생산량 : 1,063MWh/yr
- 대체효과: 약 300가구

폐고속도로 부분(가양공원↔증악터널)

현장요건
- 사용 형태 : 도로
- 설치가능 형태 : 도로형

태양광 에너지 효율
- 태양광 설치 가능 면적 : 도로C 66,000㎡ (6,600m × 10m)
- 에너지 생산량 : 10,964MWh/yr
- 대체효과: 약 3,000가구

특성 및 장단점 분석
- 대전시 흉물스런 폐다리 이용에 도움
- 단점 : 도로공사와 협의가 필요함
※ 가양공원에 있는 폐다리 면적은 100% 적용
※ 폐고속도로 = 총 길이 약 6km
 = 이가운데, 한쪽면 2차선부분은 지역교통 소통을 위해 자동차도로로 사용하고
 = 나머지 한쪽면인 2차선부분인 50% 적용하여 산출
■ 하수종말처리장

현장요건
- 사용 형태: 침전조/지붕
- 설치가능 형태: 지붕형

태양광에너지 효율
- 태양광 설치 가능 면적: 266,600㎡
- 에너지 생산량: 44,288MWh/yr
- 대체효과: 약 12100가구

특성 및 장단점 분석
- 하수종말처리장은 황제시설의 인식에서 벗어날 수 있음
- 단점: 2030년부터 시설이전 예정

■ 정수장 (월평동)

현장요건
- 사용 형태: 침전조/지붕
- 설치가능 형태: 지붕형

태양광에너지 효율
- 태양광 설치 가능 면적: 181,000㎡
- 에너지 생산량: 30,068MWh/yr
- 대체효과: 약 8200가구

특성 및 장단점 분석
- 월평정수장은 정수기술상 지붕차폐막이 도움이 됨
- 단점: 시설공사기간동안 정수장 기능 약화 및 일시정시 필요
2. 후보지역 특성 및 장단점 분석

○ 아래에서는 상술한 후보지역에 대한 특성과 장단점을 기술함

<table>
<thead>
<tr>
<th>구분</th>
<th>연면적 (㎡)</th>
<th>생활밀도 (명/㎡)</th>
<th>소재지 (가구/㎡)</th>
<th>특성 및 장단점 분석</th>
<th>무관해결 종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>동률한도로(안양동)</td>
<td>13,600</td>
<td>2.226</td>
<td>15,582</td>
<td>1. 해당지역의 주거지역으로 주거용도가 주</td>
<td>○</td>
</tr>
<tr>
<td>평화천소재 (수원시)</td>
<td>7,000</td>
<td>831</td>
<td>5,814</td>
<td>1. 교육지역의 교육적환경 향상이 필요</td>
<td>△</td>
</tr>
<tr>
<td>이동목적 (수원시)</td>
<td>2,100</td>
<td>349</td>
<td>2,442</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>△</td>
</tr>
<tr>
<td>정부청사(수원시)</td>
<td>4.1</td>
<td>주차장</td>
<td>4,400</td>
<td>1. 정부청사의 주차장과 통합</td>
<td>○</td>
</tr>
<tr>
<td>4.2</td>
<td>주차장</td>
<td>4,700</td>
<td>7,088</td>
<td>1. 정부청사의 주차장과 통합</td>
<td>○</td>
</tr>
<tr>
<td>녹수혈실정(동평동)</td>
<td>16,900</td>
<td>2,007</td>
<td>19,962</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>KOTRA</td>
<td>6,100</td>
<td>1,013</td>
<td>7,087</td>
<td>1. 교육지역의 교육적환경 향상이 필요</td>
<td>△</td>
</tr>
<tr>
<td>DCC</td>
<td>9,800</td>
<td>1,208</td>
<td>11,396</td>
<td>1. 교육지역의 교육적환경 향상이 필요</td>
<td>△</td>
</tr>
<tr>
<td>대전시청</td>
<td>3,700</td>
<td>615</td>
<td>4,303</td>
<td>1. 대전시청의 주차장과 통합</td>
<td>○</td>
</tr>
<tr>
<td>농업경제청(들과동)</td>
<td>20,000</td>
<td>3,322</td>
<td>23,257</td>
<td>1. 교육지역의 교육적환경 향상이 필요</td>
<td>○</td>
</tr>
<tr>
<td>녹수혈실정(농수혈실정)</td>
<td>28,600</td>
<td>4,718</td>
<td>33,025</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>남대전충분지(남대전)</td>
<td>140,000</td>
<td>23,257</td>
<td>162,798</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>해자도(해자도)</td>
<td>12.1</td>
<td>대형사</td>
<td>3,600</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>12.2</td>
<td>대형사</td>
<td>2,800</td>
<td>1.063</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>12.3</td>
<td>대형사</td>
<td>6,600</td>
<td>10,964</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>해수혈실정(해수혈실정)</td>
<td>265,600</td>
<td>44,288</td>
<td>310,013</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>정수혈실정(정수혈실정)</td>
<td>184,000</td>
<td>30,668</td>
<td>210,474</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
</tbody>
</table>

※ 주민수 = ○ : 많이 주주, △ : 수주, △ : 중간
※ 한편, 주민수위는 우선적으로 연구지역 주민에, 해당시점의 주민에, 전략적 상황과 기존의 변역을 고려하여 판단함

○ 또한 대전오월도와 서현공원지역, 뿌리공원 등에서도 충분히 태양광 관련 시설물 설치가 가능할 것으로 판단됨

○ 그러나, 어느 특정 사업대상지역을 덜은하고, 태양광시설물에 대한 분명한 기준임시의 시설물 또는 전력설계 등이 고려될 때, 종착
□ 공공기관 및 민간기업 등이 시설물 설치에 어려움이 있을

<table>
<thead>
<tr>
<th>사업대상지 (건설주)</th>
<th>연면적 (㎡)</th>
<th>특성</th>
<th>목표</th>
</tr>
</thead>
<tbody>
<tr>
<td>대전오월도(대전시시)</td>
<td>1.610</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>동평정(대전시시)</td>
<td>1.610</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>녹수혈실정(대전시시)</td>
<td>2.300</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>대전시청(대전시시)</td>
<td>3,300</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>동평정(대전시시)</td>
<td>3,300</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
<tr>
<td>녹수혈실정(대전시시)</td>
<td>3,300</td>
<td>1. 대형사 이동보조와 역할 기대</td>
<td>○</td>
</tr>
</tbody>
</table>

주: 사업대상지역의 특성은 대전시 내부자료에서 확인 및 일부수용

○ 한편, 태양광 시설물은 일반적으로 약 20년이상 시설물에 대한 이용보 장을 하여야만 경제적으로 탑재할 것으로 보고되고 있음

○ 따라서, 어느지역을 대상으로 하여도 시설물 사용기간 보장없이는 향 후 활용가치가 매우 소극적이 될 가능성이 높음
제4장 결론 및 정책건의

○ 도시 에너지원 대부분을 전력으로 사용하고 있는 대전광역시의 경우 태양광 도입이 시급한 실정이며, 태양광 집단 생산시설 도입이나 태양광 시범단지 조성과 같은 신재생에너지를 기반으로 한 단지 조성이 필요함
○ 국내외적으로는 태양광을 취리하는 신재생에너지 개발 및 시설물 설치로 인하여 과학과 환경, 그리고 에너지를 하나로 묶는 도시브랜드 마케팅을 하고 있음
○ 따라서 이번 연구에서는 대전광역시가 태양광을 적극적으로 활용한 녹색도시로의 전환을 위해 필요한 시점에서, 태양광 에너지 생산 시범시설이 필요한 후보지역을 살펴보고 분석하였음
○ 구체적으로는 대전시 행정구역에서 약 5천평 전후의 면적을 기치는 건축물에 대한 후보지를 살펴보았음
○ 특히 농협하나로마트, 한밭수목원, 오창동 농수산시장, 대전시장 주차장, 월드컵경기장, 남대전물류센터, 가양동 (구)경부고속도로 폐처리 및 폐고속도로(옛 경부고속도로), 원평정수장 등을 살펴보았음
○ 그 결과, 대체적으로 저렴함으로 태양광모듈은 설치가능한 것으로 분석되었으나, 특정주체가 해당 시설물에 대한 사용기간과 임대형식에 대한 사항을 고려한 필요성이 있는 것으로 분석됨
○ 한편, 태양광 관련 시설물 설치에 있어 분명한 것은 설치목적에 맞는 기준점(섯대)이 필요함
○ 경우에 따라서 태양광시설물은 일반적으로 약 15년에서 20년이상 시설물에 대한 사용보장이 되어야만 어느정도 경제적으로 타당한 것으로 사료됨
○ 따라서 그 기준점대로 시설물의 사용기간 및 전력생산능력 동일을 고려할 때, 공공기관 및 민간기업 등이 시설물 설치에 어려움이 있을 것으로 판단됨
참고문헌

대전광역시 통계연보(http://www.daejeon.go.kr)
대전광역시(2010), 환경백서
대전광역시(2010), 대전시 기후변화대응을 위한 온실가스 감축종합계획
산림청(2010), 전국 도시림 현황 통계
정환도(2004), 온실가스저감을 위한 대전광역시 대응방향, 대전발전연구원
정환도(2008), 기후변화협약과 전력부문의 기초연구, 대전발전연구원
정환도(2009), 대전시 공공기관에 대한 온실가스 저감방안, 대전발전연구원
정환도(2009), 녹색도시대전 프로젝트 구체화방안, 대전발전연구원
정환도(2009), 낙무식기와 저탄소도시 실현방안, 대전발전연구원
통계청 홈페이지(http://kostat.go.kr)
http://www.keeri.re.kr

정책연구보고서 2012-01

대전형 녹색도시 구축을 위한 기초연구

발행인 이 창 기
발행일 2012년 4월
발행처 대전발전연구원
302-846 대전광역시 서구 월평본1길 39(월평동160-20)
전화: 042-530-3515 랜스: 042-530-3575
홈페이지: http://www.djdi.re.kr

인쇄: ○○○○○ TEL 042-○-○ FAX 042-○-○

이 보고서의 내용은 연구책임자의 견해로서 대전광역시의 정책적 입장을 다룰 수 있습니다.
출처를 알리는 첨 자료로 이용될 수 있으나 무단 전재나 복제는 금합니다.